Project Explorer Visual Reporting in Power BI

Here’s a quick demonstration as to how we are elevating our Project Explorer reporting by leveraging Power BI’s visual reporting and dashboarding capabilities!

Augmented Reality Gaming – Drone Flying and Target Practice

Starting the year off with a fun (and simple) AR Gaming Experience! Fly a Drone and Shoot some Targets in the luxury of your own cube or office:

Note: Game starts off at the Main Scene where you can select to either fly a drone or play a shooting target game (click the Reset button on the ground to get back to the Main Scene at any time). Enjoy!

Autodesk 3ds Max Animations Viewed in AR with Torch

If you’ve ever thought about animating Traffic Simulations, Construction Sequencing, or even Storm Events (to name a few), then you’ve come to the right place! In this video, I will demonstrate the process of leveraging 3ds Max to animate a traffic simulation to provide a fully immersive, animated, Augmented Reality environment with ease. After importing into Torch, we will be able to position our design model on a conference room table, or on your site, for a more thorough Design Review.
Full Blog Post:

Importing InfraWorks Design Models into Torch

Quick and Easy Demonstration detailing the process of carrying your InfraWorks design models into Torch for Augmented Reality Viewing. Scan the QR Codes to view the sample from this demonstration, and fully immerse yourselves in the design!

Animation in Augmented Reality

Adding some simple animation to your scenes in Augmented Reality takes your designs to a whole new level! I see some Augmented Reality Traffic Simulations in my future! Be sure to Scan the QR Code with the Camera App on your Phone or Tablet to test out this example!

Augmented Reality Digital Resume and Portfolio

Bringing new meaning to Digital Resumes and Portfolios! Sometimes it isn’t enough to simply say you do AR. First impressions mean everything when pursuing that future opportunity, and taking a chance will certainly ensure you stand out in the crowd!

Scan my Contact QR Code and DM me for details!


Stephen Walz

Ultimate Rendered Reality Visualization Package

Contact me to Implement this Technology on your next Project:

First look at the Ultimate Rendered Reality Visualization Package! Simple, yet effective way to immerse yourself in design models! Scan the QR Codes with the Camera on your Mobile Device and Enjoy!

Geotechnical Module in Augmented Reality

Bringing Bore Hole Data to life in Augmented Reality, by leveraging Civil 3D’s Geotechnical Module, InfraWorks and Torch! Never thought “Boring” Data could be so cool! Each color within the Borings represents a different type of Soil!

Fully Immersive Designs (CAD, BIM, CIM)

Jumping into your Design Models has never been made easier! Allow me to assist your company in providing a Fully Immersive Experience for you and your Clients!

Embedding QR Codes into your Rendered Videos allows your Audience to dive into the design with a quick scan of their phone, giving them an opportunity to truly visualize, from multiple viewpoints, what the end product will look like before it’s even constructed!
Just for fun…I call it “Unrealistic Panorama Rendering in the Shire”
2 Viewpoints sharing the same QR Code of our design model with different lighting effects applied. As long as you have Viewpoints Enabled when you pull it up on your tablet or phone, you can click on the Eye Icon and jump to the other location in your view!

QC Checklist for Civil 3D Modeling

QC Checklist for Civil 3D Modeling

Give you and your company peace of mind with this Civil 3D QC Modeling Checklist. With embedded formulas and dynamically linked cells, filling out this form, all while ensuring your design model has been thoroughly checked, has never been easier to Manage and Review. This QC Modeling Checklist covers all modeling aspects available within Civil 3D, including Corridors, Gravity and Pressure Pipe Networks, Surfaces, and more!


Import Civil 3D Design Components Into InfraWorks

Import Autodesk SDF Files

           When importing Land Coverage Areas, best practice is to import SDF files as Coverage Areas and apply a rendering style (Rule Style) to each particular component that best represents the feature. Under the Source Tab, make sure that the Drape option is selected and the ‘Convert closed polylines to polygons’ box is checked.

Coverage Area Data Source Configuration Dialog Box

           When importing Striping for Roadways and Parking Lots, best practice is to import as Coverage Areas, and assign as a constant color within the Rule Style. Make sure the Drape option is selected and the ‘Convert closed polylines to polygons’ box is unchecked. Go into the Table tab and apply a buffer to depict the true width of the striping.

InfraWorks Select Style/Color Dialog Box

Coverage Area – Adding a Buffer Value

           When importing Fences and Barriers, best practice is to import as a Barrier, then specify the Rule Style, Height and Object Spacing. Make sure the Drape option is selected and ‘Convert closed polylines to polygons’ box is unchecked.

Define Fencing as Barriers

Applying Style, Height and Object Spacing to Fencing

Select Chain Link Fence Component

           When importing areas that will have running and/or standing water on the site (i.e. streams, retention/detention ponds, etc.), best practice is to import as Water Areas with the Water Rule Style applied to it. If these areas are to illustrate standing water (i.e. pond, lake, etc.), best practice is to select either ‘Don’t Drape’ or ‘Set Elevation’ option to show a consistent elevation throughout the wet area. However, if these areas are to illustrate a stream, you will want to drape these features onto the surface.

Applying the Default Water Style to Watered Area

Select ‘Don’t Drape’ for Standing Watered Areas

Import LandXML Files

           When importing LandXML files into your model, InfraWorks will automatically recognize what type of component is being imported (i.e. surface, gravity pipe network, etc.) and define it as such. InfraWorks will separate your Gravity Pipe Networks into 2 Categories: Pipelines and Pipeline Connectors.

Importing Gravity Pipe Networks Dialog Box

Import DWG 3D Model

           When importing your Pressure Pipe Networks, best practice is to import as a DWG 3D Model. Once imported, it’s best to categorize these components as pipelines. Note that since these objects have been exploded to the point where all Civil 3D data has been lost, all pipes, fittings and appurtenances will be grouped together, not separated as Pipeline Connectors.

Preview of Pressure Pipe Network

Pressure Pipe Network shown in InfraWorks Model Connecting to Piping from Revit Models

Import Revit Models

           When importing Revit Model files, best practice is to import as such. InfraWorks will automatically categorize these models as Buildings, regardless of the actual contents within the Revit Model (i.e. Plumbing, Mechanical/HVAC, Electrical, etc.).

Preview of the Revit Mechanical/Process Model

Export Civil 3D Components to be Imported into InfraWorks

           There’s obviously many ways to export your Civil 3D components and bring them into your InfraWorks model. As a personal preference, I like to extract my site components individually. Although a little more time is spent up front exporting these components, it can, and will, save you time down the road as you further develop your design. This process keeps it simple, making it much easier to manage and update specific components, as needed, at a later date.

Here’s a view of the Civil 3D Model

Export to Autodesk SDF

           Land Coverage Areas are best to be exported from Civil 3D as Autodesk SDF files. Note that all areas will need to be closed polylines to ensure that they’re represented accurately in the InfraWorks Model. In Civil 3D, export these site features to Autodesk SDF files using the MapExport command. During the export process, make sure you manually select the features in the Selection tab and Check the ‘Treat closed polylines as polygons’ box under the Options tab.

MapExport Dialog Box

MapExport Dialog Box

Export to LandXML

           Surfaces and Gravity Pipe Networks are best to be exported from Civil 3D as LandXML files. If the site has multiple surfaces and gravity pipe networks within the design, it would be best to export each surface and/or network individually, rather than all at once such that all components reside in 1 LandXML file. A quick tip here is to combine your existing and proposed surfaces into 1 complete surface model and then export this new combined surface to LandXML. If any excavation is required for buildings/structures on your site, be sure to account for this as well. The last thing you want to see in your InfraWorks models are surfaces running through your buildings.

Civil 3D Combined Surface

Export to Civil 3D

           Pressure Pipe Networks are not supported in InfraWorks at this time. To bring these components into InfraWorks, best practice is to WBlock these networks out to a separate file. Once exported, open up the file, select all objects within, and explode them to the point that they are 3D Solids.

Civil 3D Pressure Pipe Network

Leveraging InfraWorks and Stingray for Interdisciplinary Checks and Reviews

  If you’re like me, it seems like all the cool new design and review programs that have been released over the past several years have been more focused on the building/structure side of the business. Sure, Autodesk had released InfraWorks for us Civil folks, and have put in a lot of effort into further developing it and making it a practical application for us to use during the design process. But it still has its limitations.

           I’ve been trying to find ways to incorporate InfraWorks into my design process since its first release, and have found it to be great at many things. I can do my preliminary existing site analysis by quickly obtaining topography, waterways, drainage features, buildings, etc. in a matter of minutes; whereas this process would have taken several hours, sometimes days, trying to track down all this information online and through various agencies. It also increases speed and decision-making during your project’s conceptual design phase as you can run through different design scenarios on the fly.

           Probably the most important use I’ve found InfraWorks to provide, is it’s ability to improve your Civil 3D Models from a visualization standpoint as well as it’s improved interoperability with other BIM applications. Yes, Civil 3D can bring in Revit models via ADSK and DWG exports, but trying to view your Revit and Civil 3D models in a rendered state in Civil 3D can be quite painful, time consuming and will cause file corruption in your design models at some point.

           As Clients and Owners discover the true value of properly developing an accurate BIM | CIM design, and adapt to this new technology wave, it’s becoming more common for them to make it a requirement for AEC firms to include their 3D models along with hard copy plan sets at each design deliverable. Over the past few years, I’ve seen many design review meetings take place where BIM models are brought into Navisworks, where firms are able to navigate through the model with their clients. Clients are typically left feeling impressed by the new technology and much more comfortable with the design itself, as they can really visualize how everything is coming together. Trying to get design models from Civil 3D into Navisworks has been a whole other process that isn’t as seamless as Revit into Navisworks. Another downside to this concept is that Clients are required to download software to view these models on their own.

           The more I have incorporated InfraWorks into my design process, the more I see it as just an extension to Civil 3D. It really has brought some of my company’s designs to life. I’ve produced some really cool renderings and videos of site fly-overs and walk-throughs of the entire design model. I’ve been able to incorporate our design models from both Civil 3D and Revit, thus providing another program that gives us the ability to review these models for interdisciplinary checks. It also provides a much improved visualization from a Civil standpoint as other disciplines aren’t just looking at lines on a drawing anymore. They can really visualize how their building/structure models are being integrated into the surrounding land, and the rest of the site design.

           A couple years ago, I came across a webcast that demonstrated how to bring your Civil 3D models into Stingray. Stingray, as far as I knew, was more of a gaming platform. That being said, I assumed that if you ever just wanted to be that person turning your Civil 3D models into Stingray Games, and if you have that kind of time on your hands, more power to you. To be honest, although it seemed pretty neat, I didn’t see it as very practical in any sense. Plus, the demonstration had you go from Civil 3D, to InfraWorks, to 3ds Max and then, finally, into Stingray. To me, this just seemed like a whole big workaround just to produce a game.

           With all the recent advancements in technology, it just seems like there should be an easier process. The more I get into relying on InfraWorks as an extension to Civil 3D, the more I see both programs as 1. I have also since found out that I can ultimately bypass using 3ds Max altogether. I can actually export my InfraWorks model to an FBX file, which can then be brought directly into Stingray.

           Once you import your FBX model into Stingray, and get everything positioned in your scene the way you want it to appear, you can then deploy your scene to an executable (EXE) file that can be launched on any computer without having the need to install any additional software. This is extremely important to note, as clients and owners will feel much more at ease with the overall concept and final output, and not feel overwhelmed by having to acquire, install and actually learn a new software, or tool.

           Another concept that might take some getting used to during this process (I know I had some trouble getting used to it at least), was not to consider this EXE file as a “Game”. I’m sure you can imagine what the response would be if you discuss turning your models into a “Game” to upper management. Instead of considering it a “Game, you’re going to want to consider it a “Virtual Reality Simulation”. This phrasing of the concept will get you increased buy-in from upper management, as well as Clients and Owners.

           Although this Virtual Reality Simulation is actually an EXE file that can be launched directly on your laptop, Stingray also provides the real deal VR experience where you can hook up Oculus Rift, HTC Vive and some other VR headset devices for your simulations, thus allowing you, clients, etc. to be fully immersed into your design models.       

An Approach for Dynamically Linking Erosion and Sediment Control BMPs

Have you ever wanted to automate, or dynamically link, your Erosion and Sediment Control symbology to storm drainage and/or grading design features in AutoCAD® Civil 3D®? By thinking outside the box a little, you will realize that there are quite a few different ways to achieve this. In my experience, I have found that the best approach is to create new label styles that will incorporate specific symbology to these features. 

An added benefit to using this approach is that Civil 3D allows you to assign Pay Items to these Labels using Quantity Takeoff (QTO) Manager as well. In this article, I will go over a couple examples of dynamically linking your Erosion and Sediment Control BMPs within your design.

Gravel Inlet Protection

To avoid massive file sizes and unnecessary downtime, our standard filing practice is to place major design components into separate working files, then data shortcut these components into each file as needed. We set up a separate CAD design model file each for Grading, Drainage, Erosion Control, etc. As we design our storm drainage features in the Drainage model file, we will assign structure styles in that particular file to show up as curb inlets, junction boxes, etc. to depict the structure’s true representation.  We then data reference these drainage components into our Erosion Control model file and configure a new label style to include a Gravel Inlet Protection 3D block.

Figures 1 and 2 show an example of a simple 3D Gravel Inlet Protection block.

Figure 1

Figure 2 

To set up your Civil 3D Structure Label style, you will need to open your Toolspace and go to the Settings tab. Expand the Structure | Label Styles category and create a new Structure Label Style (Figure 3).


Figure 3

In the Label Style Composer dialog box, go to the General tab and change the Orientation Reference to Object.

Figure 4

Next, go to the Layout tab and create a Block Component for your Gravel Inlet Protection block.

Figure 5

After you have the Structure Label Style set up, go to the Annotate ribbon and Add Label. Change your Feature selection to “Pipe Network,” Label Type to “Single Part Plan,” and Structure Label Style to your new “Gravel Inlet Protection” label style

The final product should look similar to Figures 6 and 7.

Figure 6

Figure 7

On a side note, you can easily achieve close to similar results by further utilizing the Structure Styles. Once you have your Storm Pipe Network data referenced into your Erosion Control model file, you can set up a new Structure Style where the Gravel Inlet Protection 3D block will appear at each storm drainage structure location in Plan and Profile views. The only drawback to this approach is if you switch to a 3D view, the actual model of the structure will appear in place of the Gravel Inlet Protection 3D block.

Figure 8

Check Dam

This same concept can be applied to grading objects and feature lines as well. Figures 9 and 10 are a 3D view of a Check Dam block.

Figure 9

Figure 10

In this example, I will outline the process of applying a 3D Check Dam symbol along a diversion ditch centerline at a specified interval. Once your block is configured to match the top and bottom widths and side slopes of your ditch, the next step is to configure a Civil 3D Style that will incorporate the Check Dam block. In almost all cases, diversion ditches are being modeled using feature lines to generate the proposed grading surfaces for each phase of Erosion Control needed for your project.  We want to use Civil 3D’s Feature Line Labels to apply our check dams along the ditch.

To set up your Civil 3D Feature Line Label style, you’ll need to open your Toolspace and go to the Settings tab. Expand the General | Label Styles category and create a new Line and Curve label style separately. In the Label Style Composer dialog box, go to the Layout tab and create a block component for your Check Dam 3D element. See Figures 11 and 12.

Figure 11

Figure 12

After you have them set up, go to the Annotate ribbon and Add Labels. Change the Feature selection to “Line and Curve” and update the Style selections to your new “Check Dam” label styles.

Figure 13

To ensure that you are placing your check dam symbols (labels) at specific intervals, you can use AutoCAD’s Measure command to place points at the required spacing. Once the points are placed, create multiple “Single Segment” labels and adjust the location using grips to be at the same location as the “measured” point.

Theoretically, you can use the same Measure command to place your Check Dam block (instead of points) and it will space it accordingly and locate it vertically as well along your Grading Feature Line. The only downside is that it’s a one-shot deal, so if you modify the Grading Feature Line down the road, the Check Dam symbol will not update its location automatically. You would ultimately have to select all of your symbols, then delete and reinsert.

By using the Label approach, if you modify your diversion ditch centerline in any direction, the Check Dam locations will update automatically, but you will need to re-space your labels as needed. Ultimately, there are benefits and drawbacks to whichever route you choose to go, so you’ll have to make sure that the path you choose obviously has more upside to it.  Either approach will ultimately give a final product looking similar to Figures 14 and 15.

Figure 14

Figure 15

Quantity Take-Off (QTO) Manager

After you have all your Erosion and Sediment Control BMPs laid out, you can assign pay items to the various labels using QTO Manager. Unfortunately, Civil 3D doesn’t allow you to assign pay items to labels during setup or in your template for automatic and dynamic quantification. However, you can assign them after all your labels are in there fairly easily by isolating your labels using groups, selecting structures through the pipe network vista if you go this route, or even using the SELECTSIMILAR command in Civil 3D.

Figure 16

The Label Styles approach of dynamically linking Erosion and Sediment Control BMPs is just one of many that can be applied within Civil 3D. What it all really comes down to is personal preferences and what the final product needs to be. For example, I prefer to go with the Structure and Feature Line Labels approach as the location of the block will always be linked to these components both horizontally and vertically. Furthermore, if I’m already making an effort to set up label styles to be applied to my drainage structures, I might as well do the same for feature lines for consistency purposes.

As we continue to move forward into a complete 3D Dynamic Model world of Civil Design where everything is linked to each other, we can continue to chip away, and toss out, some of those old static 2D ways of drafting and designing.